

First Results from the Catalina Dynamic Ocean Chemistry Project

Craig Gelpi

Catalina Marine Society

Southern California Academy of Sciences Annual Meeting

California State University Northridge

May 3, 2019

Introduction

- Ocean acidification (decrease in pH) is the result of increasing atmospheric CO₂ which enters the ocean and produces carbonic acid
 - Affects sea life, especially shell-bearing (calcium carbonate) animals
- Realizations of acidification depend on local factors, including upwelling, plant growth, metabolic activity
- Goal is to understand the dynamics of pH at Santa Catalina Island for insight into how to accommodate climate change

Sites: Two Harbors and Avalon

Seabed ~ 100ft

Depth profiling from boat

Mooring

- Instrumentation
 - YSI EXO2 sonde with sensors for:
 - pH,
 - dissolved oxygen,
 - chlorophyll,
 - Conductivity/temperature
 - Thermographs
 - 6, 12 and 24 m
- Deployed 4 times to 18-m depth
 - 7/2018
 - 9/2018
 - 12/2018
 - 3/2019
- Depth chosen to reduce biofouling and take advantage of internal waves

pH Modulations Correlated with Temperature September 20 - October 12

pH modulations are probably not biological in origin, but driven by internal wave advection

pH vs Temperature

pH Distributions, Equalized for Temperature to 18° C

pH value depends on temperature ΔpH ~ - 0.007/°C at pH = 8

pH Depth Gradient

•
$$\frac{\partial pH}{\partial t} = v_z \frac{\partial pH}{\partial z}$$

• $\frac{\partial pH}{\partial z} = \frac{\partial pH}{\partial t} \frac{\partial t}{\partial T} \frac{\partial T}{\partial z}$
• $\frac{\partial pH}{\partial z} = -0.0036/m$

Split difference yields -0.005 units/m

•
$$\frac{\partial pH}{\partial z} = \frac{\partial pH}{\partial T} \frac{\partial T}{\partial z} = 0.041 \frac{\partial T}{\partial z} = -0.0068/m$$

Depth profiling: Same Instrumentation Lowered from Boat

March pH change at thermocline, unusually well defined

Date	pH (average between 6 and 30 m)
08/20/2017	8.17
10/04/2017	8.15
12/29/2017	8.19
03/18/2018	8.18
04/29/2018	8.16
05/20/2018	8.04
06/16/2018	8.18
09/09/2018	8.18
11/17/2018	8.09
03/24/2019	<u>8.04</u>

8.14±0.032 cal err

pH Comparisons Amongst Locations

- Frieder et al., (2012) La Jolla Kelp Forest pH measurements
 - 7.9 median value (17-m depth)
- Leinweber and Gruber (2013) at Santa Monica Bay Observatory
 - 8.08 median value (surface to 20 m)
- Kapsenberg and Hofmann (2016) N. Channel Islands
 - 8.00 +/- 0.043 Anacapa Landing Cove (6-m depth?)
- Catalina Marine Society (2019) Santa Catalina Island
 - 8.19 +/- 0.05 (18.3-m depth mooring)
 - 8.13 +/-0.04 (6- to 30-m depth profiles)

Higher Catalina pH? SoCal Chlorophyll Map

Phytoplankton increase pH by uptake of CO_2 .

Upwelling decreases pH

mg/m³

Chlorophyll,

Phytoplankton thrive in upwelled waters

Catalina has little phytoplankton and upwelling but high pH

Suggests that abiotic upwelling dominates biology in determining pH in the bight

Findings

- Average pH value is 8.16
 - Catalina pH less acidic than other SoCal Bight sites
- Internal waves modulate pH
 - Provides up to 0.2 units of pH modulation at 18 m
 - pH depth gradient
 - ~-0.005 units/m

THANKS!

Bonnell Cove Foundation

The Kenneth T. and Eileen L.

TED SHARSHAN

USC Wrigley Institute for Environmental Studies

A non-profit institution